外皮・躯体と設備・機器の総合エネルギーシミュレーションツール「BEST」の開発(その 247) 設計ツールを用いた感度解析・最適化の検討

Development of an Integrated Energy Simulation Tool for Buildings and MEP Systems, the BEST (Part 247)

Study of Sensitivity Analysis and Optimization using Design Tools

正 会 員○飯田 玲香 (日建設計) 技術フェロー 石野 久彌 (首都大学名誉教授) 正 会 員 二宮 博史 (日建設計) 特別会員 村上 周三 (建築・環境省エネルギー機構) 技術フェロー 長谷川 巌 (日建設計)

Reika IIDA*1 Shuzo MURAKAMI*2 Hisaya ISHINO*3

Iwao HASEGAWA*1 Hiroshi NINOMIYA*1

*1 Nikken Sekkei Research Institute *2 Institute of Building Environment and Energy Conservation

*3 Tokyo Metropolitan Univ.

When buildings are designed for energy efficiency and comfort, a detailed simulation of the building is very meaningful. However, the comparative study of numerous architectural elements is difficult to do in practice because it takes a lot of time to model and analyze the results. In this report, the BEST design tool is combined with an optimal design support tool (DAKOTA) that integrates the process of sensitivity analysis and optimization. The case studies show that cooperating can efficiently obtain useful information for the design.

はじめに

建物全体の詳細なシミュレーションを行うことは、省エネ性や快適性の高い建物を設計する上で非常に有意義である。しかし、数多くの建築要素を比較検討するには、モデル作成や結果分析に多くの時間を要するため、現実的にはハードルが高い。そこで本報では、感度解析及び最適化等のプロセスを統合的に行うことができる最適設計支援ツール (DAKOTA 注1) と BEST 設計ツール 1908 3.0.1 (以降 BEST)を連携し、その効果について検討する。

1. 最適設計支援ツール(DAKOTA)との連携

1.1 DAKOTA の概要

最適化や感度解析、不確実性評価及び較正の様々な分析アルゴリズムを有するオープンソースであり、構造力学や熱伝達、流体力学などの数多くの工学分野のシミュレーションで利用可能である。

1.2 設計ツールとの連携方法

図-1 に感度解析及び最適化の計算フローを示す。入力された設計変数及び検討手法により DAKOTA の分析アルゴリズムが実行され、設計変数が書き込まれた変数ファイルが出力される。次に、BEST との連携プログラムが実行され以下の処理が行われる。①変数ファイルの設計変数を BEST の物件データに書き込む。②BEST を実

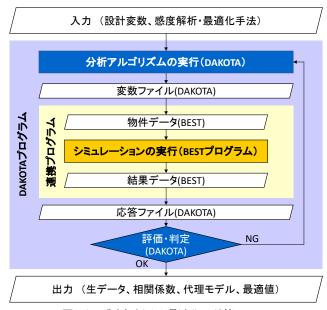


図-1 感度解析及び最適化の計算フロー

行する。③BEST の結果データから目的関数となる値を取得し、DAKOTA の応答ファイルに書き込む。尚、ベースとなる BEST の物件データは予め用意しておく。DAKOTA にて終了判定条件が満たされるまで反復計算が実行され、終了後に分析結果が出力される。

2. ケーススタディ

2.1 外部遮蔽の感度解析と多目的最適化

(1) モデル概要

東京の事務室の一角を想定した 150 ㎡の 2 ゾーンのモ デルを対象とする (図-2)。モデルの概要を表-1 に示す。

(2) 計算条件

東西南北4方位(4ケース)における水平・垂直庇の年間熱負荷^{注3}への影響を検討する。庇にてルーバーを模擬し、図-3に示す水平・垂直庇(ルーバー)の設置間隔を設計変数として、感度解析及び最適化を行う。

1) 感度解析(表-2)

年間熱負荷を単目的としたラテン超方格サンプリング (LHS) ^{注4}による感度解析を行う。尚、サンプル数は100とする。

2) 最適化 (表-2)

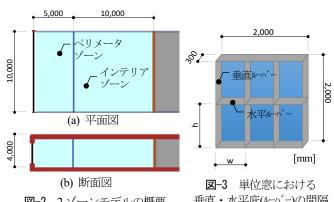
設置コスト(ここでは、庇(ルーバー)部材の総面積とする。)を目的関数に追加し、多目的遺伝的アルゴリズム (MOGA) は5による代理ベースの最適化 (SBO) は6を行う。

(3) 結果

1) 感度解析

各方位の年間熱負荷と設計変数の散布図及び相関係数 (r=)を図-4 に示す。全ケースとも曲線的な分布がみられ、北向き以外のケースで水平庇 h の相関係数が大きく、南向きと西向きにおける削減効果が高い結果となった。

LHS により得られた離散的なデータを連続的な曲面へ近似した応答曲面²¹を図-5に示す。南向きのケースでは、垂直庇の間隔に因らず水平庇の間隔 h が 260mm あたりで最小値となっており、水平庇の間隔 h と垂直庇の間隔 w が大きくなるほど、緩やかに増大する。


2) 最適化

南向き以外のケースでは、庇(ルーバー)の間隔が小さい(ルーバーの総面積が大きい)程、年間熱負荷は小さくなる。図-6に年間熱負荷と庇(ルーバー)の総面積を目的関数とした多

目的最適化による散布図(パレート解)を示す。これにより、 年間熱負荷の削減効果と設置コスト(庇の総面積)のバラ ンスを検討することが可能である。

尚、サンプル数を 100 とした場合の 1 ケースの計算時間は 30 分程度 18 であった。

図-2 2 ゾ	ーンモデルの概要	垂直・水平庇(ハーバー)の間隔
	表一1 2 ゾーンモデ	シンの概要
項目	概要	
地点	東京(拡張アメダス標準	年 2010)
用途	事務所 事務室 (建築物	7省エネ法 ^{注2} の室用途)
外壁	RC+タイル、熱貫流率	: 2.51 [W/m ² K]
窓	窓面積率:60[%]、単板	₹ 8 [mm]
庇(ルーバー)	奥行 300 [mm]	
表-2 2ゾーンモデルの計算条件		
項目	条件	
	1) 感度解析	2) 最適化
設計変数	a) 垂直庇 (ルーバー)	の間隔w[連続変数]
	(100~2,000 [mm])	
	b) 水平庇 (ルーバー)	の間隔h[連続変数]
	(100~2,000 [mm])	
目的関数	a) 年間熱負荷 [MJ/m²年	
		b) 庇の総面積 [m²] (単
		位窓面積(4m²あたり))
検討手法	a) 実験計画法(LHS)に	b) MOGA による代理
	よる感度解析	ベース最適化
※ 中胚の間隔部 mm]	500 型 490 恒 480 型 470 蘇 460 世 450	000000000000000000000000000000000000
X 平底の間隔h mm 500 1000 1500 2000 500 1000 1500 2000 500 1000 500	- 500 型垣 - 490 垣 - 480 - 470 - 470	250 470 490 510

10 15 20 25

ルーバー面積 [m²]

(b) 西向き

500 1000 1500 2000 垂直庇の間隔w [mm]

(b) 西向き

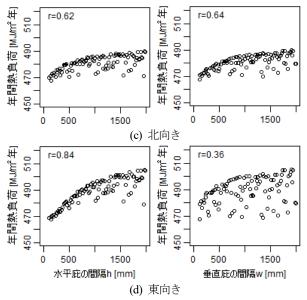


図-4 各方位の年間熱負荷と設計変数の散布図及び相関係数

2.2 外皮仕様と空調 省エネ手法の感度解析と最適化

(1) モデルの概要(図-7)

基準階が9フロアある約10,000 mの事務所ビルを対象とする。図-7(b)にモデルの概要を示す。

(2) 計算条件

基準ケース(図-7 (b))を想定し、窓及び断熱厚さ(外皮 仕様)の変更と大温度差送風及び大温度差送水(省エネ 手法)による空調の一次エネルギー消費量の削減効果を 検討する。尚、基準ケースの年間熱負荷は、493[MJ/㎡年]、 空調の一次エネルギー消費量は、410[MJ/㎡年]であった。

1) 外皮仕様の検討

年間熱負荷を目的関数とし、外壁の断熱厚さと窓種類 (7種類)を設計変数とする。LHSによる感度解析と、遺伝的アルゴリズム (GA) ^{注9}による最適化を行う。尚、サンプル数は100とした。計算条件を表-3に示す。また、最適化の結果、最も年間熱負荷が小さくなる設計変数にて最大熱負荷計算を行い、熱源及び空調機の容量等を変更した後、空調の一次エネルギー消費量を確認する。

2) 空調の省エネ手法の検討

熱源本体、熱源補機、水搬送、空気搬送の年間一次エネルギー消費量をそれぞれ目的関数とし、送風温度差dTaと送水温度差dTwを設計変数とした LHS による感度解析を行う。また、空調の一次エネルギー消費量を単目的とした GA による SBO を行う。大温度差送風の場合は、温度差と連動して空調機及び CAV の風量を自動設計し、大温度差送水の場合は、一次ポンプ、二次ポンプ、空調機、FCU の送水量を自動設計するようにプログラムした。計算条件を表4に示す。

(3) 結果

1) 外皮仕様の検討

図-8 に、感度解析による年間熱負荷と設計変数の散布 図及び箱ひげ図を示す。断熱厚さが厚いほど年間熱負荷

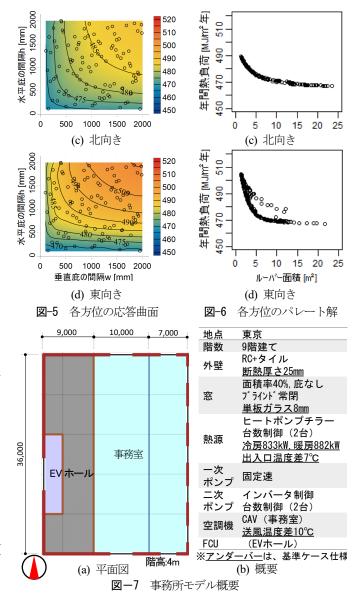


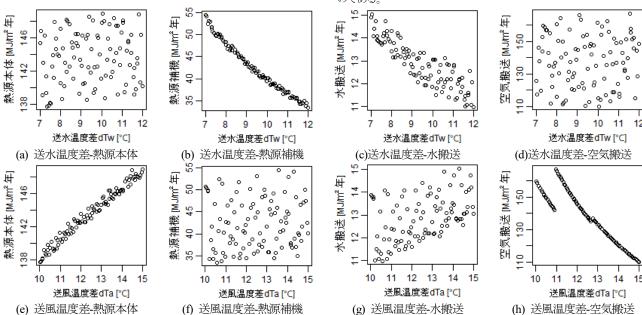
表-3 事務所モデルの年間勢負荷の計算条件

衣一3 事務所で / / / / / / 中间然貝側の計算米件		
設計変数	a) 外壁の断熱厚さ [連続変数] (5~50 [mm])	
	b) 窓種類 [離散変数] (単板ガラス(4),熱反ガラス	
	(52),複層ガラス(404),高性能熱反ガラス(472),日射	
	遮蔽型 Low-E+透明ガラス(556),日射取得型 Low-	
	E+透明ガラス(560),透明ガラス+日射取得型	
	Low-E(572))※カッコ内の数値は窓 ID を示す。	
目的関数	年間熱負荷 [MJ/㎡年]	
検討手法	実験計画法(LHS)による感度解析	
	遺伝的アルゴリズム(GA)による最適化	
表-4 事務所モデルの一次エネルギーの計算条件		
設計変数	a) 送風温度差[連続変数] (10~15 [°C])	
	b) 送水温度差[連続変数](7~12 [℃])	
目的関数	空調の一次エネルギー消費量 [MJ/㎡年]	
	※感度解析の場合は、熱源、熱源補機、水搬送、	
	空気搬送をそれぞれ目的関数とする。	
検討手法	a) 実験計画法(LHS)による感度解析	
	b) MOGA による代理ベースの最適化(SBO)	

は小さくなり、緩やかに削減量は小さくなる。また、単板ガラスが最も大きく、日射遮蔽型 Low-E+透明ガラスが最も小さい結果となった。

最適化の結果、年間熱負荷及び空調一次エネルギー消費量は、基準ケースと比べて 11%削減(年間熱負荷: 438[MJ/㎡年]、エネルギー消費量: 364[MJ/㎡年]) された。

2) 空調の省エネ手法の検討


感度解析による各目的関数と設計変数の散布図を図-9に示す。送水温度差が大きいほど、熱源補機及び水搬送のエネルギーが減少した。また、送風温度差が大きいほど熱源本体、水搬送のエネルギーが増加し、空気搬送は減少した。尚、空気搬送については、滑らかな線が部分的に途切れたような結果になっているが、これは、風量・静圧に合わせてファンの型番が自動選定されるためである。

空調一次エネルギー消費量を単目的とした最適化の結果、送水温度差 12° C、送風温度差 15° Cにて最小となり、基準ケースと比べて 25%削減 $(307[MJ/m^{\circ}$ 年])された(図 -10)。尚、サンプル数を 100 とした場合の 1 ケースの計算時間は 120 分程度であった。

3. まとめ

DAKOTA と BEST の連携方法を示し、ケーススタディを行った。外部遮蔽の検討では、年間熱負荷を目的関数とした感度解析による水平・垂直庇の応答曲面や、設置コスト(庇の面積)を目的関数に追加した多目的最適化(パレート解)により、設計に有益な情報を効率的に得ることが可能となった。入力の手間を掛けずに多くのケーススタディが行えるため、窓等の外皮仕様の検討では、設計変数の相互作用を加味した感度分析が容易となり、大温度差送風等の省エネ手法の検討では、複数の目的関数(熱源や搬送エネルギー消費量)への影響を踏まえたエネルギー消費量の削減が可能となった。

今後は、ケーススタディを行いながら最適なサンプル 数や分析アルゴリズム及び結果の分析方法の検討を行い、 実務設計に展開出来るよう開発を進めたい。

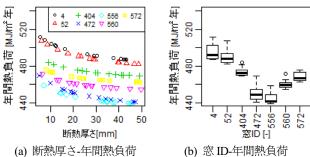


図-8 年間熱負荷と設計変数の散布図及び箱ひげ図

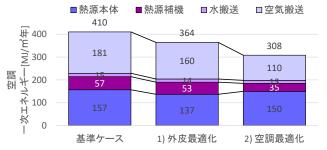


図-10 空調一次エネルギー消費量の削減効果

【注釈】 1) Dakota (Design Analysis Kit for Optimization and Terascale Applications)は、米国サンディア国立研究所で開発されたオープンソース である。今回は Ver.6.11 を使用した。 https://dakota.sandia.gov/ 2) 建築物 のエネルギー消費性能の向上に関する法律を指す。 3) 全熱の装置負荷 (外気+室負荷) とする。 4) LHS(Latin Hypercube Sampling)は、指定した サンプル数で可能な限り設計空間を均一にサンプリングすることが可能であり、モンテカルロ法より少ないサンプル数で同等の統計精度が実現 5) MOGA(Multi-Objective Genetic Algorithm)は、遺伝的アルゴリ ズムを応用して多目的最適化におけるパレー ・ト解を求める方法である。 6) SBO(Surrogate-Based Optimization)は、LHS 等から得られた初期サン ルにより近似関数(代理モデル)を作成し、大域的最適解を求めるための新 たなサンプルの追加・近似関数の再形成を行い、最適解を予測する。 の代理モデルを利用することでサンプル数を大幅に減らすことが可能となる。7) 非線形関数の近似に適した kriging 法を利用した。 8) パソコ ンのスペックは Windows10, Intel(R) CoreTM i7-6600U CPU @ 2.60GHz 2.80 GHz, 8.00 GB とする。9) SBO は、離散変数の場合に正しく近似関数が作 成出来ない場合があるため、遺伝的アルゴリズムのみを採用した

【謝辞】本報は、(一財)建築環境・省エネルギー機構内に設置された産官 学連携による環境負荷削減のための建築物の総合的なエネルギー消費量 算出ツール開発に関するプログラム開発委員会(石野久彌主査)、BEST 非 住宅版開発委員会の活動成果の一部であり、関係各位に謝意を表するも のである。

図-9 各目的関数と設計変数の散布図